CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis.

نویسندگان

  • Renhong Wu
  • Shibai Li
  • Shan He
  • Friedrich Wassmann
  • Caihong Yu
  • Genji Qin
  • Lukas Schreiber
  • Li-Jia Qu
  • Hongya Gu
چکیده

Plants have a chemically heterogeneous lipophilic layer, the cuticle, which protects them from biotic and abiotic stresses. The mechanisms that regulate cuticle development are poorly understood. We identified a rice (Oryza sativa) dominant curly leaf mutant, curly flag leaf1 (cfl1), and cloned CFL1, which encodes a WW domain protein. We overexpressed both rice and Arabidopsis CFL1 in Arabidopsis thaliana; these transgenic plants showed severely impaired cuticle development, similar to that in cfl1 rice. Reduced expression of At CFL1 resulted in reinforcement of cuticle structure. At CFL1 was predominantly expressed in specialized epidermal cells and in regions where dehiscence and abscission occur. Biochemical evidence showed that At CFL1 interacts with HDG1, a class IV homeodomain-leucine zipper transcription factor. Suppression of HDG1 function resulted in similar defective cuticle phenotypes in wild-type Arabidopsis but much alleviated phenotypes in At cfl1-1 mutants. The expression of two cuticle development-associated genes, BDG and FDH, was downregulated in At CFL1 overexpressor and HDG1 suppression plants. HDG1 binds to the cis-element L1 box, which exists in the regulatory regions of BDG and FDH. Our results suggest that rice and Arabidopsis CFL1 negatively regulate cuticle development by affecting the function of HDG1, which regulates the downstream genes BDG and FDH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CFLAP1 and CFLAP2 Are Two bHLH Transcription Factors Participating in Synergistic Regulation of AtCFL1-Mediated Cuticle Development in Arabidopsis

The cuticle is a hydrophobic lipid layer covering the epidermal cells of terrestrial plants. Although many genes involved in Arabidopsis cuticle development have been identified, the transcriptional regulation of these genes is largely unknown. Previously, we demonstrated that AtCFL1 negatively regulates cuticle development by interacting with the HD-ZIP IV transcription factor HDG1. Here, we r...

متن کامل

Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice.

Leaf rolling is considered an important agronomic trait in rice (Oryza sativa) breeding. To understand the molecular mechanism controlling leaf rolling, we screened a rice T-DNA insertion population and isolated the outcurved leaf1 (oul1) mutant showing abaxial leaf rolling. The phenotypes were caused by knockout of Rice outermost cell-specific gene5 (Roc5), an ortholog of the Arabidopsis (Arab...

متن کامل

Microarray studies of maize plants overexpressing HD-ZIP IV gene, OUTER CELL LAYER1 (OCL1) identified target genes in lipid metabolism and cuticle biosynthesis, suggesting a role in pavement

INTRODUCTION Epidermis, the outermost cell layer of land plants, serves as an interface between plants and the surrounding environment. The shoot epidermis, which is derived from the L1 layer of the shoot apex, gives rise to specialized cell types – pavement cells, stomatal guard cells and trichomes – to optimize the balance between protection and gas exchange. The cuticulated pavement cells fo...

متن کامل

Expression and Purification of Homeodomain

Homeobox genes encode transcription factors which play important roles in the developmental processes of many multicellular organisms. TGIFLX/Y (TGIFLX and TGIFLY) are members of the homeobox superfamily of genes. Their expressions are specifically detected in the human adult testis but their functions are remained to be investigated. In this investigation we cloned full length of TGIFLY cDNA a...

متن کامل

Functional Analysis of a Pomegranate (Punica granatum L.) MYB Transcription Factor Involved in the Regulation of Anthocyanin Biosynthesis

Background: Pomegranate fruit (Punica granatum L.) is a rich source of anthocyanin pigments resulting in vibrant colours and anti-oxidant contents. Although the intensity and pattern of anthocyanin biosynthesis in fruit are strongly influenced by R2R3-MYB transcription factors, little is known about the regulation and role of MYB in anthocyanin pathway of pomegranate. Objectives: The present st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 23 9  شماره 

صفحات  -

تاریخ انتشار 2011